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Note 

A Fast ICE Solution Procedure for Flows 
with Largely Invariant Compressibility 

INTRODUCTION 

The ICE method of Harlow and Amsden [I] has proved a powerful one and has 
led the way to a whole series of variants with important practical applications. One 
such important class of applications deals with multidimensional transient two-phase 
(liquid-vapor) problems as they arise in safety evaluations of nuclear reactors 
subjected to certain postulated severe accident initiators [2, 31. The basic approach is 
to couple continuity and momentum through an equation of state or an equation that 
governs the rate of phase change depending on the two-phase model assumed. Aside 
from the usual variations in differencing schemes and degrees of implicitness there are 
two basic approaches to achieving this coupling. The original one is based on the 
formulation and solution of a Poisson equation [ 11, by direct inversion or more 
commonly by iteration, for the pressure field. The other is based on direct iteration 
between momentum and continuity equations, the latter modified by use of a 
density-pressure relationship based on the equation of state or a phase changed law. 
Cell-by-cell or equation-by-equation iterations have been applied. In most recent 
applications the iteration approach has been preferred over that utilizing the Poisson 
equation on the basis of computational economy. However, for certain problems 
implementing the “proper” iteration procedures it is still more a matter of art rather 
than one of science and it may require substantial experience on the part of the user. 
Further, in applying the iteration approach some compromise must be made between 
accuracy and economy, and heuristic schemes, as, for example, addition of artificial 
viscosity and mass diffusion must be applied to compensate for the errors introduced 
due to “imperfect” convergence at each cycle. Both of these aspects can be crucial in 
achieving a stable and accurate solution in problems with large property gradients, 
such as for example in essentially incompressible flow fields (i.e., liquid-only) with 
embedded compressible region(s) (i.e., developing two-phase zones as in local boiling 
[3 ] or flashing). 

The numerical scheme described here is based on the Poisson equation approach. 
However, the size of the linear system of equations to be solved at each 
computational cycle corresponds to the number of computational cells containing 
fluid whose compressibility varies substantially in comparison to that of the 
remaining essentially incompressible cells. For many problems this corresponds to 
substantial savings, (maximum benefit is achieved for flow fields with fully invariant 
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compressibility) and could be advantageously utilized even in comparison to iteration 
precedures. The additional advantage is that there is no accumulation of errors due to 
“imperfect” iteration convergence with beneficial stability and accuracy properties; 
hence good coupling between flow regions with greatly differing characteristics is 
obtained with a calculation that is not dependent upon artificial dampening fcr 
stability. 

FORMULATION 

In the final phase of the ICE method, when using cylindrical coordinates with axial 
symmetry, the system of equations becomes [ 11 

where Fiqj is the unknown “hybrid” pressure, 8 (0 < % < 1) and $ (0 < Q < 1) are 
weighting constants, Gi,j is a quantity which contains all available data for the fzth 
time step, and cyVj = (a~/@);,~ is related to the square of the sound speed. The above 
linear system of equations can be arranged in matrix form 

AX=B, 12) 

where A is an M = i X j banded matrix with the left side of Eq. (1) as its diagonal. B 
is formed from Gi,i and the pressure boundary conditon. 

Upon investigation of the coefficient matrix A, we found that provided 6t is held 
constant, only the diagonal of A varied in each computational cycle. Moreover, all 
terms on the diagonal are constant with time except for those that correspond to cells 
where the “sound speed’ (czj) happens to differ from its initial value (c:,~). The 
matrix A may be written as the sum of two matrices 

A=A,+A,, (3) 

where *4, consists of terms that remain constant (i.e., remain equal to their initial 
value) and A, is a diagonal matrix which contains only the variable terms. The terms 
of the A, matrix are represented by E~,~. where 

1 I 
& ------F k,k - c;,j 

‘i-j 

and 

k = i,,,(j - 1) + i. 
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The terms of the A,, matrix are represented by ai>, where the terms outside of the 
band are zero. Thus, A may be written as 

a +&I1 
1 I1 
I 4, A= , 

[I 

a,2------ 

az2 + E22, I 
\ I - 

I 

(5) 

-----_---- i;,,, + E,,,; 

It may be noted that for flows with large essentially incompressible regions, which 
(regions) are having therefore negligible variations in compressibility in comparison 
to the remaining compressible portions of the flow field, most of the ckk terms are 
zero. For illustration we take ckk and E/, as the nonzero terms. Clearly the number 
and position of these nonzero E’S can be completely arbitrary and depend on the 
particular application of interest. The matrix A may thus be represented by 

In matrix form we may write 

= 

al2 
--- - 

I 
\ I \ 

a2, ‘a(k 
I 

I 

I 
\ 

\ I 

I 

I 
‘a41 1 

\ I 

I ‘\ I ---.----a 
m m  

(A,+A,)X=B 

and multiplying Eq. (7) by A;’ we obtain 

(I + A,‘A,)X= A,% 

Let us represent A; ’ as 

(6) 

(7) 

(8) 

(9) 
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Now since the A, matrix contains two nonzero terms E,,~ and Ed!, then the mark 
product A;’ A, will contain two nonzero columns, i.e., 

--- 0 --- a;,&[, --- 0 

--- 0 --- dlEf, --- 0 
I 
I 
/ 
I 

‘%, 1 
\ I 

\ 1 ! 
‘a;& --- 0 

I 

--- 0 --- a;-,.!cJ: --- 0 
--- 0 ---- Q’,!Qi --- 0 

We may define the matrix C and the vector D as 

C=l+A;‘A, 

and 

D=A,‘B. 

Equation (9) may thus be written as 

CX=D 

The elements of the matrix in Eq. (13) may be displayed as 

‘1 --- alktzkk --- () -__ airEo --.- 0’ 
0 --- aikckk --- 0 _-- airerr --- 0 
I 1 
A --- 1 

+a;kckk 
I 
I 

b --- al-,,&,, --- 0 --- ai-l,,ci, --- 0 
0 --- bl,,‘,,, --- 0 --- aLtEll --- 1 

The diagonal elements of C are all one except in columns k and 1. We may extract 
rows k and i from Eq. (14) and form a new system consisting of only two unk~o~~~~ 
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Equation 15 may be solved by direct solution or if it is of large enough rank by 
iteration methods. Once this equation has been solved, the other terms in vector X 
may be solved for explicitly, for example, 

X, = d, - a&.c,,X, - a;,E,,X,. (16) 

Thus in this example, the original ICE method required the solution of an m X m 
linear system at each computational cycle while the new procedure requires the 
solution of an m x m system only once at the very beginning of the calculation and 
the solution of a 2 x 2 system at this particular computational cycle. On the other 
hand the limitations due to computer storage requirements for A;’ must be 
mentioned. Still 150-, 250-, and 500~cell computations are quite readily accessible 
with the CDC 6400, 7600, and IBM-195, respectively. It may be easily seen that 
changes of 6t during the computation can also be accommodated by simply 
multiplying A;’ by dt,!,/&& where 6t, is the time step utilized at the nth 
computational cycle and St, the time step for which the inverse A;’ has been 
calculated. 

Naturally, if the number of highly compressible cells increases with time the rank 
of Eq. (15) approaches that of the full system Eq. (14) and the benefits diminish. 
However: for developing flows the integrated benefit can be still quite substantial. 
Since this approach is oriented to flow with Largely Invariant Compressibility, it will 
be referred to as ICE-LIC. 

APPLICATION 

The ICE-LIC method was incorporated into the HEV-2D computer code [5] which 
performs two-dimensional r = z boiling development calculations for a liquid sodium 
cooled rod-bundle (a fuel assembly for the Liquid Metal Cooled Fast Breeder 
Reactor-LMFBR), experiencing a severe power-to-flow mismatch transient. Such 
situations would correspond, for example, to accidental reactor power increase 
beyond rated levels, or to coolant flow coastdown (i.e., pump power loss) with failure 
of the reactor protection system to terminate the nuclear chain reaction (LOFA). The 
analysis of such events is extremely important in assessing the consequences of such 
accidents or providing mitigating factors as appropriate. Such analyses play an 
essential role in licensing the LMFBR, both in the U. S. and overseas [4,5]. Due to 
neutronic feedback coolant boiling in current designs of commercial size LMFBRs 
leads to power increases. In a sense, therefore, coolant boiling drives the accident, 
and, its accurate numerical simulation, is essential to predicting the accident 
outcome. Further a most interesting aspect of this particular example chosen as 
application for ICE-LIC, is the possibility of boiling instabilities which may lead to 
rapid coolant expulsion from the flow channel. Such boiling instabilities are being 
calculated by current safety analysis codes [6] which model the coolant channel only 
in one (axial) dimension. 
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FIG. 1. Inlet flow transient comparisons between HEV-lD, KEV-2D and SAS (61 predictions. Zeros 

time is taken at boiling inception. 

In reality, however, the boiling develops in a two-dimensional fashion. The boiling 
zone will initiate at the hottest spot in the rod bundle, which is near the outlet and 
around the center of the channel that encloses the bundle of fuel rods. As the coolanc 
continues to heat up this boiling zone will grow in all directions, and as it grows it 
will interfere (due to large volume of vapor production) with the liquid coolant flow 
as the coolant channel operates under prescribed pressure boundary conditons. This 
inrerference is that which leads to flow instability in the one-dimensional models and 
it is important to determine whether the real two-dimensional process is also suscep- 
tible to such flow instabilities. 

A Loss-of-Flow Accident (LOFA) for the FFTF reactor is chosen for illustration 
here. The coolant channel is nearly 5 in. in diameter and its heated portion 36 in. 
long. At the time of boiling inception there is a 400” F temperature gradient across a 
radial distance near the top of the active core. For sufficient resolution, therefore, 
nearly five radial nodes are required. Similarly a very large number of axial nodes are 
required to meet resolution and accuracy requirements. This is a situation ideally 
suitable to ICE-LIC since early in the calculation only very few nodes wili be 
compressible (boiling) and the remaining of this large flow field may be treated as 
nearly incompressible. As the boiling zone expands so will the size of the linear 
system that needs to be solved, however, only at the very end of the computation, 
when the whole flow channel is boiling, will the computational etfort per cpcle 
become comparable to that of the original ICE. In other words initially all E’S are 
zero, at boiling inception one E is nonzero and with time the number of nonzero E’S 
increases. Noting the nonlinear effort increase with size for the solution of linear 
systems of equations the benefits in this case make the difference between achieving a 
“feasible” versus a ‘ipractical” solution. For the particular I-IEV-ZD application 
reported here, 5000 time steps require 6 minutes of the CDC7600 for 128 
computational cells (4 radial, and 32 axial). The equivalent one-dimensional, HEV- 
lD, version requires 2 set for 2000 time steps and 31 (axial) aodes. For this 
particular application the A x A;’ produced the unit matrix within IO-” in each 
element, and as a consequence conservation of mass and energy were observed with 
extremely tight accuracy. 
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FIG. 2. Two-dimensional development of the boiling zone as flow reversal is approached. Axial 
position is normalized by the active core length. The zero position is at the top of the active core; (a) at 
1.0 set, (b) at 1.2 set, and (c) at 1.4 set following boiling inception. 

The numerical results for this case indicate that the boiling zone quickly develops 
into a bubble-like, high in vapor content region, while the liquid coolant continues to 
flow and bypass this region in its periphery. This causes a dramatic reduction in the 
suceptibility of the flow to instabilities and results to a gradual boil-out instead of the 
rapid expulsion calculated for a one-dimensioanl model. This result is illustrated by 
the comparison of the inlet flow transient for the two models shown in Fig. 1. The 
good comparison of HEV-1D and SAS [6] results on the other hand indicate that the 
flow behavior is thermally controlled and it is quite independent of the particular two- 
phase flow model utilized. The bubble-like two-dimensional flow structure gradually 
becomes one-dimensional. Two vapor fraction contours, at three different times are 
given in Fig. 2. The inner contour represents nearly pure vapor (-75 %) while the 
outer contour marks the boiling inception boundary. The steep density gradient at the 
“bubble” boundary may be thus visualized. Following the transition to one dimen- 
sional behavior the transients calculated by HEV-1D and HEV-2D are in close 
agreement. In fact, Fig. 1 shows that the instability response yielding flow reversal in 
the HEV-1D results is identical, only delayed, in the 2D case by one second. 

CONCLIJSIGN 

For the particular example of ICE-LIC application presented here the achieved 
computational stability and economy are crucial for high-resolution scoping or 
experiment-interpretation calculations but also for coupling more crude-noded 
versions to large system-wide accident analyses calculations. 
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